NO1-25953

MEASURING THE EFFECTS OF HETEROGENEITY ON
DISTRIBUTED SYSTEMS

Mohamed El-Toweissy Osman ZeinElDine Ravi Mukkamala

Department of Computer Science
Old Dominion University
Norfolk, Virginia 23529

ABSTRACT

Distributed computer systems in daily use are be-
coming more and more heterogeneous. Currently,
much of the design and analysis studies of such sys-
tems assume homogeneity. This assumption of ho-
mogeneity has been mainly driven by the resulting
simplicity in modeling and analysis. In this paper,
we present a simulation study to investigate the ef-
fects of heterogeneity on scheduling algorithms for
hard real-time distributed systems. In contrast to
pervious results which indicate that random schedul-
ing may be as good as a more complex scheduler, our
algorithm is shown to be consistently better than a
random scheduler. This conclusion is more prevalent
at high workloads as well as at high levels of hetero-
geneity.

INTRODUCTION

With the advancing communication technologics
and the need for integration of global systems, liet-
erogeneity is becoming a reality in distributed com-
puter systems. However, most existing performance
studies of such systems still assume homogeneity; be
it in hardware (e.g., node speed) or in software (e.g.,
scheduling algorithms). Generally, such homogeneity
assumptions are dictated by the resulting simplicity
in modeling and analysis.

Clearly, heterogeneous systems are less analyti-
cally tractable than their homogeneous counterparts.
Typically, heterogeneity will result in increased num-
ber of variables in the context of analytical tech-
niques such as mathematical programming, proba-
bilistic analysis, and queuing theory. This is one rea-
son for assuming homogeneity while using analyti-
cal techniques. In the case of simulation techniques,
however, it is possible for a modeler to introduce any
level of heterogeneity into the system. The problem
now lies in the complexity of interpretation of the

results. If the simulator was written with the basic
objective of testing a hypothesis or comparing the
performance of a set of algorithins, imtroducing het-
erogeneity will substantially imcrease efforts to sep-
arnte its eflects from those of the algorithm. Thus,
a modeler is more likely 1o assume a homogeneous
system.

With this in mind, we have been investigating into
the effeets of heterogeneity on the performance of
distributed systemns. Our initial efforts, reported
in (ZeinEIDine et al. 1991) and this paper, focus
on scheduling in hard real-time systems. For this
purpose, we have designed a distributed scheduler
aimed at handling various heterogeneities; in partic-
ular, heterogeneities in nodes, node traffic and local
scheduling algorithms.

In the rest of this paper we present the system model.
Next, we discuss some issues related to the effective-
ness of ounr algorithin. Major results with their re-
spective conclusions are then portrayed. Finally, we
highlight some recommendations for future work.

THE PROPOSED MODEL

For the purposes of scheduling, the distributed sys-
tem is modeled as a tree of nodes as is shown i Fig-
ure 1. The nodes at the fowest level (level 0) are
the processing nodes while the nodes at the higher
levels represent sereers (or guardians). A process-
ing node is responsible for executing arriving johs
when they meet some specified criteria (e.g.. dead-
line). The processing nodes are grouped into clus-
ters, and ecach eluster is assigned a anique server.
When a server receives a job, it tries to either redi-
rect that job Lo a processing node within its cluster
or to its guardian. It is to be noted that this hier-
archical structure could be logical (i.e., some of the
processing nodes may themselves assume the role of
the servers).

The system model has four components: jobs, pro-
cessing nodes, servers, and the communication sub-
system. A job is characterized by its arrival time,
execution time, deadline, and priority (if any). The
specifications of a processing node include its speed
factor, scheduling policy, external arrival rate (of
jobs), and job mix (due to heterogeneity). A server is
modeled by its speed and its node assignment policy.
Finally, the communication subsystem is represented
by the speeds of transmission and distances between
different nodes (processing and servers) in the sys-
tem.

Operation

The flow diagram of the scheduling algorithm 1s
shown in Figure 2. When a job with deadline arrives
(either from an external user or from a server) at
a processing node, the local scheduling algorithm at
the node decides whether or not to execute this job
locally. This decision is based on pending jobs in
the local queue (which are already guaranteed to be
executed within their deadlines), the requirements of
the new job, and the scheduling policies (e.g., FCFS,
SIF, SDF, SSF etc. (Zhao et al. 1987)). In case the
local scheduler cannot execute the new job, it either
sends the job to its server (if there is a possibility of
completion), or discard the job (if there s no such
chance of completion).

The level-1 server maintains a copy of the latest
information provided by each of its child nodes in-
cluding the load at the node and its scheduling pol-
icy. Using this information, the server should be able
to decide which processing nodes are eligible for exe-
cuting a job and meet its deadline. When more than
one candidate node is available, a random selection
is carried out among these nodes. If a server can-
not find a candidate node for executing the job, it
forwards the job to the level-2 server.

The information at the level-2 server consists of an
abstraction of the information available at each of the
level-1 servers. This server redirects an arriving job
to one of the level-1 servers. The choice of candidate
servers is dependent on the ability of these servers to
redirect a job to one of the processing nodes in their
cluster to meet the deadline of the job. (lor more
details on operation and information contents at each
level, the reader is advised to refer to (ZeinElDine et

al. 1991)).
EXPERIMENT

In order to utilize the proposed scheduler as a ve-
hicle for our research on measuring the cllects of het-
erogeneity, first it has to be proven effective. Conse-
quently, we have conducted several parametric stud-

ies to determine the sensitivity of our algorithm to
varions parameters: the cluster size, the frequency
of propagation of load statistics (between levels), the
processing node scheduling policy (FCFS, SJF etc),
the communication delay (hetween nodes), and the
effects of information structures. For lack of space,
we present a sample of the results pertaining to the
first three of these parameters. Accordingly, all the
results reported here assuine:

e the total number of processing nodes is 100;
¢ equal load at all nodes;
o communication delay between any nodes is the

Saine.

The performance of the scheduler is measured in
terms of the percentage of jobs discarded by the al-
gorithm {at levels 0, 1 & 2). The rate of arrivals
of jobs and their processing requirements are con-
binedly represented through a load factor. This load
factor refers to the load on the overall system. Our
load consists of jobs [rom three types of execution
time constraints (10, 50 & 100) with slack (25, 35 &
300) respectively.

Discussion

We now discuss our observations regarding the
characteristics of the distributed scheduling algo-
rithm {DSA) in terms of the three selected param-
eters. In order to isolate the effect of one factor from
others, the choice of parameters is made judiciously.
For example, in studying the effects of cluster size
(Figure 3), the updation period is chosen to he a
medium value of 200 (stat=200). or each paramet-
ric study we have two sets of runs, they differ in the
local scheduling policy at the processing nodes; one
set uses CT'S while the the other uses SIF.

Cluster size Cluster size indicates the mmnber
of processing nodes being assigned to a level-1 server.
In our study, we have considered three cluster sizes:
100, 50, and 10. A cluster of 100 nodes mdicates
a centralized server structure where all the process-
ing nodes are under one level-1 server. In this case.
level-2 server is absent. Stmilarly, in the case of clus-
ter of 50 nodes. there are two level-1 servers, and one
level-2 server. For 10-node cluster, we have 10 level-1
servers. In addition, we consider a completely decen-
tralized case represented by the random policy. In
this case, each processing node acts as its own server
and randomly selects i destination node to execute
a job whicl it cannot locally guarantee.

The results are plotted in Figure 3. These results
show that our algorithm is robust to variations in

cluster size. In addition, its performance is signifi-
cantly superior to a random policy.

Frequency of updations The currency of in-
formation at a node about the rest of the system
plays a major role in performance. Hence, if the
state of processing nodes varies rapidly, then the fre-
quency of status information exchange between the
levels should also be high. In order to determine the
sensitivity of the proposed algorithm to the period of
updating statistics at the servers, we experimented
with four time periods: 25, 100, 200 and 500 units.
The results are summarized in Figure 4. From these
results, the following observations are drawn:

e our algorithm is extremely sensitive to changes
in period of information exchanges between
servers and processing nodes;

e even in the worst case of 500 units, the per-
formance of our algorithm is significantly better
than the random policy.

Local scheduling policy Our third parametric
study is concerned with the effect of the scheduling
policy at the processing nodes. In this paper, we
report the results of the runs conducted with all the
processing nodes having the same scheduling policy;
cither FCFS or SJE. Later in our work, we plan to
experiment with different mixes of local scheduling
policies. We would also give each node the freedom to
select its scheduling policy in order to determine the
impact of node autonomy on the overall performance
of the system. This issue is of crucial importance,
since there is no scheduling policy that best fits all
working environments.

Revisiting the results of Figures 3 and 4, we can
observe the following:

e both FCFS and SIF behave similarly at light to
moderate loads, while SJF is consistently betler
than FCFS at high loads;

e the percentage of discarded jobs sharply in-
creases with the increase in the load factor for
both the Random and FCFS policies. However,
for SJF the rate of increase in the percentage of
discarded jobs dramatically drops at high loads.

The reason for the above result is that, at light to
moderate loads there is no build up al the processing
node queues, consequently, the dominant factor is the
jobs being processed at the node processors. This
behavior is the same for all policies. Ilowever, when
the queues start to build up, the respective queue
policy prevails. Hence, for the SJF, the short jobs
with their relatively small slack, will have a better

probability of being executed.

EFFECTS OF HETEROGENEITY

So far, onr concentration has been on gaining bhet-

ter insight into the hehavior of our algorithm in or-
der to assess its viability and suitability to be able
to conduct further research. Proven effective, we re-
turn back to the objective for which the algorithm
has been developed. The main goal of the current
phase of our studies is measuring the effects of het-
erogeneity on scheduling in hard real-time distributed
systems. For this purpose, we are pursuing multiple
experiments to wmeasure the effects of node hetero-
geneity (simply represented by node speed), hetero-
geneity in scheduling algorithins, heterogeneity in
loads as well as other system heterogeneities. In this
paper, we present the effects of node heterogeneity.
(Results on other types will be reported in a sequel
of papers).

We consider four different node speed distributions
(hetl, het2, hetd, and hom). The homogeneous case
(denoted by hom) represents a system with 100 nodes
having the same unit speeds. The three heteroge-
neous case are represented by hetl, het2, and het3.
Each of these set are descrihed by a set of <# ol
nodes, speed factors> pairs. The average speed fac-
tor for all distribution is 1.0, so the average system
speed s the sime, The three heterogeneons case difl-
fer in their speed [actor virinee, thus vaeying the de-
gree of heterogeneity. While hetd represents a severe
case of heterogeneity, hetl is more biased towards
homogeneity.

-

The results are included it Figure 5. From these

results, we observe Chat -

e with our algorithim, even though the increase in
degree of heterogeneity resulted in an increase of
discarded jobs, the increase is not so significant.
Hence, onr algorithi appears to be robust to
node heterogeneities,

e the performance of the random policy is ex-
tremely sensitive Lo the node heterogeneity. As
the heterogeneity is increased, the number of dis-
carded jobs is also significantly increased.

With the increase in node heterogeneity, the number
of nodes with slow speed also increase. Thus, using
a random policy, if a slow speed node is selected ran-
domly, then the job is more likely to he discarded. In
our algorithin | since the server is aware ol the het-
erogeneities, it can suitably avoid a low speed node
when necessary. Fven in this case, there is a tendency
for high-speed nodes to be overloaded and low speed
nodes to be under loaded. Hence, the difference in
performance.

CONCLUSION

In this paper, we have presented a distributed
scheduling algorithm that can tolerate different types
of system heterogeneity. Following, we have con-
ducted several parametric studies with the objective
of evaluating the effectiveness of our algorithm. Ren-
dering its effectiveness, we have started pursuing our
studies toward our goal of determining the impact
of heterogeneity on the overall system performance.
Our initial step has been reported here, and it con-
centrates on the effect of node heterogeneity. Some
interesting results have been obtained. From these
results, we reach the following conclusions.

e Concerning the algorithm behavior: the algo-
rithm is robust to variations in the cluster size;
besides, il efliciently utilizes the available state
information; moreover, it is sensitive to the local
scheduling policy at the processing nodes.

e Concerning the effect of heterogeneity: the per-
formance of the algorithm tends to be invariant
with respect to node heterogeneity; in addition,
the algorithm has a large improvement over the
random selection in terms of the percentage of
discarded jobs.

Currently, we are studying the eflects of hetero-
geneity in local scheduling algorithms and hetero-
geneities in loads on the performance of the over-
all system. With heterogeneities in scheduling poli-
cies, each node may autonomously decide its own
scheduling policy (FCFS, SJF, etc.). Similarly, by
load heterogeneities we let the external load at a
node be independent of the other nodes. Similarly,
each node may autonomously decide its resources and
their speeds. We propose to measure the effects of
such heterogeneities in terms of the response time
and throughput. We conjecture that the performance
of random policies will continue to deteriorate under
these heterogeneities as compared to even simple re-
source allocation or execution policies.

ACKNOWLEDGEMENT
This research was sponsored in part by the NASA

Langley Research Center under contracts NAG-1-
1114 and NAG-1-1154.

References

[l Biyabani, S.R.; J.A. Stankovic; and K. Ra-
mamritham. 1988. “The integration of deadline
and criticalness in hard real-time scheduling.”
Proc. Real-time Systems Symposium, (DEC.),
152-160.

Chuang, J.Y. and J.W.S. Liu. 1988, “Algorithms
for scheduling periodic jobs to minimize aver-
age error.” Proc. Real-time Systems Symposium,
(DEC.), 142-151.

Craig, D.W. and C.M. Woodside. 1990. “'T'he re-
Jection rate for tasks with random arrivals, dead-
lines, and preemptive scheduling.” [FEFE Trans.
Software Engineering SE-16, no. 10(OCT.),
1198-1208.

Eager D.L.; E.D. Lazowska; and J. Zahorjan.
1986. “Adaptive load sharing in homogeneous
distributed systems.” IEEE Trans. Software En-
gineering, SE-12(May), no. 5, 662-675.

Rajkumar R.; L. Sha; and J.P. Lehoczky. 1988,
“Real-time synclironization protocols for mul-
tiprocessors,” Proc. Real-time Systems Sympo-
stum. (DIC), 259-269.

Shin, K.G.; C.M. Krishna; and Y.H. Lee. “Op-
timal resource control in periodic real-time en-
vironments.” Proc. Real-time Systems Sympo-
stum. (DEC), 33-41.

Stankovic J. and K. Ramamritham. 1986.
“Lvaluation of a bidding algorithm for hard
real-time distributed systems.” [EFE Trans.
ComputersC-34, no. 12(Dec.), 1130-1143.

ZeinElDine, O.; M. El-Toweissy; and R. Mukka-
mala. 1991, * A Distributed Scheduling Algo-
rithm for Heterogeneous Real-time Systems.™ To
appear in Lecturer Notes in Computer Science,
Springer-Verlag.

Zhao, \W.; K. Ramamritham; and J. Stankovic.
1987. “Scheduling tasks with resource require-
ments in hard-real time systems.” [EEE Trans.
Software Engineering SE-13, no. 5(May): 564-

[

D,

Level 2 server

Level 1 server

.o Level O:
Proc. node
Figure 1 : System Model
oo TTTTTTTTTTT |
l —» discard ‘I
|
I { Level 2 server
| —3 oalevel Iserver |
from other level 1 l :
servers | i
| I
0 I
e e e e e e o] e e e e s s e o e e e = T T T d
e A
: ———» discard {
}) : Level 1 server
i 3 loaprocessing
from other child | node in this |
nodes = cluster =
| ‘A |
b ——_————————_——————— 4
Jobs fm——————t—— T T T T T T T T T)
from other servers : to server : Processing
| > | granted C | nods
guaranteed job { Job departure
External jobs | queue processor |

Figure 2: Flow diagram of The Algorithm

c—oh—.éa.

[V B -C I e L Il =%

» cluster = 100 stat = 200

. c[uster-— 8 com=35
+ cluster = % node: hom

* random

SJF

Figure 3:
Effect of cluster size

0.1 02 03 04 05 06 07 08 09

load factor

—3P a4

30

25

20

15

10

« stat =25 cluster =100

« stat =100 com =
+ stat =200 node:
¢ stat = 500

e random

SJF

S
hom

Figure 4:
Effcct of updation pcno(l

30
K cluster = 100 stat = 200

25| o cluster = 58 com =
+ cluster = node: hom

s random

20
15 FCFS

10

0
0 01 02 03 04 05 06 07 08 09
load factor —¥» b

30

« stat =25 cluster=100

25, , stat=100 com =35
+ stat = 200 node: hom

20| o star =500
e random

FCFS

10

5 5
05 o1 02 03 04 05 06 07 08 09 0501 02 03 04 05 06 0.7 08 09
load factor —» 4a load factor — b
30 30r
= hom
o5 | ™ hom 05| & hetl
s hetl * het2
* het2 . th3
20| *het3 20
15 15
DSA (FCFS
10 DSA(SJF) 10 ()
5 5
045 01 02 03 04 05 06 07 08 09 Figure 5: %501 02 03 04 05 06 07 08
load factor —» a Effect of Node Heterogenelty load factor —» b
30
= hom hetl : <50,1.0>,<25,1.5>, | 2 hon
s hetl ' LSy A B « hetl Random (FCFS§
25|y peh) Random(SJF) <25.0.5> * her2
o0 | *hes3 het2 : <50.0.5> , <50,1.5> 20| * e
s het3 : <20,0.25>, <20,0.5>, 5
<20,1.0>, <20,1.5>,
10 <20 ,1.75> 10
5 5

load factor

0
0 01 02 03 04 05 06 07 08 0.9

—» C

0
0 01 02 03 04 05 06 0.7 08 09
load factor —» d

